ROBUST REGRESSION SMOOTHING FOR DEPENDENT OBSERVATIONS
نویسندگان
چکیده
منابع مشابه
Robust Locally Weighted Regression and Smoothing Scatterplots
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملRobust Local Polynomial Regression for Dependent Data
Let (Xj , Yj) n j=1 be a realization of a bivariate jointly strictly stationary process. We consider a robust estimator of the regression function m(x) = E(Y |X = x) by using local polynomial regression techniques. The estimator is a local M-estimator weighted by a kernel function. Under mixing conditions satisfied by many time series models, together with other appropriate conditions, consiste...
متن کاملAutomatic Smoothing for Poisson Regression
Adaptive choice of smoothing parameters for nonparametric Poisson regression (O’Sullivan et. al., 1986) is considered in this paper. A computable approximation of the unbiased risk estimate (AUBR) for Poisson regression is introduced. This approximation can be used to automatically tune the smoothing parameter for the penalized likelihood estimator. An alternative choice is the generalized appr...
متن کاملDelay-Dependent Robust Asymptotically Stable for Linear Time Variant Systems
In this paper, the problem of delay dependent robust asymptotically stable for uncertain linear time-variant system with multiple delays is investigated. A new delay-dependent stability sufficient condition is given by using the Lyapunov method, linear matrix inequality (LMI), parameterized first-order model transformation technique and transformation of the interval uncertainty in to the norm ...
متن کاملRobust Multi-task Regression with Grossly Corrupted Observations
We consider the multiple-response regression problem, where the response is subject to sparse gross errors, in the high-dimensional setup. We propose a tractable regularized M-estimator that is robust to such error, where the sum of two individual regularization terms are used: the first one encourages row-sparse regression parameters, and the second one encourages a sparse error term. We obtai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications of the Korean Mathematical Society
سال: 2004
ISSN: 1225-1763
DOI: 10.4134/ckms.2004.19.2.345